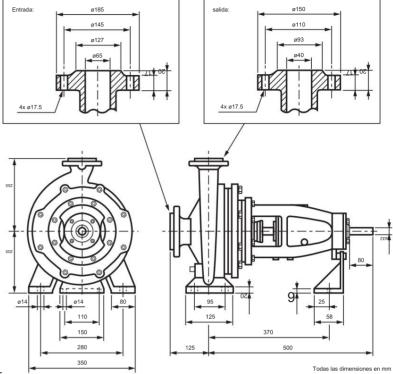
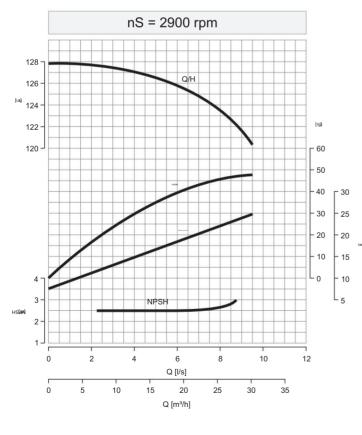


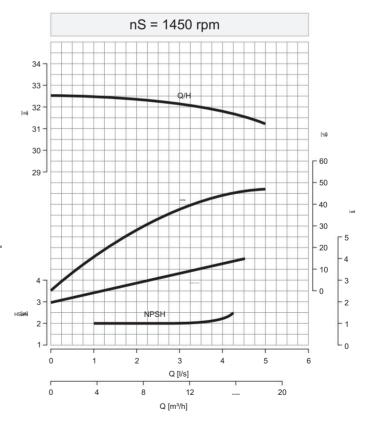
IS65-40-315

NÚMERO DE ARTÍCULO ROTEK

BOMBA159







	Velocidad	Capacidad [m³/	Altura	motor rec.	NPSH
	[min-1]	h]	[m]	[kilovatios]	[m] 2,5
	2,900	15	127	30	
		25	125		2.5
		30	123		3.0
	1,450	7.5	32	4	2.5
		12.5	32		2.5
		15	31		BROISINGIA

Caudal mínimo; 5% de OOPT Peso neto: 107 kg Característica de la bomba según ISO2548,C / IS65-40-315

Levenda:

cabeza en metros

NPSH Presión máxima de retención en metros

- Caudal en l/s o m3/h
- Eficiencia en % Potencia
- requerida en el eje de la bomba

Valido para:

Viscosidad del medio [ηM]: 1,0 mPas (agua, 20°C) Densidad del medio [pM]: 998 kg/m³ (agua, 20°C)

Cálculo de los valores de entrega con velocidades de eje variables: la velocidad del eje

de la bomba se puede ajustar para ajustar el caudal o la presión de entrega de forma variable. El caudal respectivo y la presión de entrega deben calcularse de la siguiente manera: QN / Q1 . . . caudal HN / H1. . . cabeza nN / n1. . . Velocidad Donde N corresponde a la curva característica y 1